A novel T-cell subset able to kill relapsed cancers

Project: Research projectResearch Project

Description

Project SummaryThe major problem in cancer treatment is that, although patients respond to the initial treatment with cancerremission, the vast majority of the treated patients will have tumor recurrence in the primary and metastaticsites. For patients receiving immunotherapy, the recurring tumor cells frequently become antigen-loss-variants(ALVs) due to pressure and selection by the immune system. ALV outgrowth is an important mechanism bywhich tumors survive the immune attack and render immunotherapies targeting a single or multiple antigensineffective. Recently, we discovered that when primed under Th9-polarizing conditions, naïve CD8+ T cellscould also differentiate into an IL-9-producing Tc9 subset (Lu et al, Proc Natl Acad Sci USA, 2014). Althoughless cytolytic in vitro as compared with Tc1 cells, adoptive transfer of tumor-specific Tc9 cells elicits asignificantly greater antitumor response against large established melanoma (B16 and B16-OVA) and colon(MC38-gp100) tumors. More importantly, our preliminary studies showed that adoptively transferred tumor(OVA)-specific Tc9 but not Tc1 cells eradicated not only OVA-expressing tumor cells but also large establishedchimeric tumors containing both OVA-expressing and OVA-negative tumor cells, as well as OVA-negativetumor cells grown on the contralateral flank of mice, indicating that the Tc9 cells could mediate the killing oflocal bystander and remote ALVs in vivo. Based on these novel findings, we hypothesize that the Tc9 subsetmay be a superb effector T-cell subset for cancer immunotherapy to eradicate primary and recurrent ALVtumors. Aim 1 will determine whether and how Tc9 cells mediate killing of ALVs via epitope spreading andinduction of a host CTL response against other antigens expressed by the tumor cells, and Aim 2 willdetermine the potential of human tumor-specific Tc9 cells in killing human primary and ALV tumors in vivo.These innovative and mechanistic studies will shed light on the mechanisms underlying Tc9 cell-mediatedantitumor immunity and will thus establish a foundation for translating this discovery into more effectiveimmunotherapies using tumor-specific T-cell subsets in human cancers.
StatusActive
Effective start/end date7/1/166/30/21

Funding

  • National Institutes of Health: $362,569.00

Fingerprint

T-Lymphocyte Subsets
Neoplasms
Antigens
Immunotherapy
Interleukin-9
Experimental Melanomas
Adoptive Transfer
Neoplasm Antigens
Epitopes
Immune System
Immunity
Colon